We study joint optimization of service placement, request routing, and CPU sizing in a cooperative MEC system. The problem is considered from the perspective of the service provider (SP), which delivers heterogeneous MEC-enabled delay-sensitive services, and needs to pay for the used resources to the mobile network operators and the cloud provider, while earning revenue from the served requests. We formulate the problem of maximizing the SP's total profit subject to the computation, storage, and communication constraints of each edge node and end-to-end delay requirements of the services as a mixed-integer non-convex optimization problem, and prove it to be NP-hard. To tackle the challenges in solving the problem, we first introduce a design trade-off parameter for different delay requirements of each service, which maintains flexibility in prioritizing them, and transform the original optimization problem by the new delay constraints. Then, by exploiting a hidden convexity, we reformulate the delay constraints into an equivalent form. Next, to handle the challenge of the complicating (integer) variables, using primal decomposition, we decompose the problem into an equivalent form of master and inner sub-problems over the mixed and real variables, respectively. We then employ a cutting-plane approach for building up adequate representations of the extremal value of the inner problem as a function of the complicating variables and the set of values of the complicating variables for which the inner problem is feasible. Finally, we propose a solution strategy based on generalized Benders decomposition and prove its convergence to the optimal solution within a limited number of iterations. Extensive simulation results demonstrate that the proposed scheme significantly outperforms the existing mechanisms in terms of the SP's profit, cache hit ratio, running time, and end-to-end delay.
翻译:暂无翻译