We present a modified velocity-obstacle (VO) algorithm that uses probabilistic partial observations of the environment to compute velocities and navigate a robot to a target. Our system uses commodity visual sensors, including a mono-camera and a 2D Lidar, to explicitly predict the velocities and positions of surrounding obstacles through optical flow estimation, object detection, and sensor fusion. A key aspect of our work is coupling the perception (OF: optical flow) and planning (VO) components for reliable navigation. Overall, our OF-VO algorithm using learning-based perception and model-based planning methods offers better performance than prior algorithms in terms of navigation time and success rate of collision avoidance. Our method also provides bounds on the probabilistic collision avoidance algorithm. We highlight the realtime performance of OF-VO on a Turtlebot navigating among pedestrians in both simulated and real-world scenes. A demo video is available at https://gamma.umd.edu/ofvo


翻译:我们提出了一个经过修改的高速测速器算法(VO),该算法使用对环境的概率部分观测来计算速度并将机器人引导到目标。我们的系统使用商品视觉传感器,包括单相机和2D利达尔,以通过光学流量估计、物体探测和感知聚合明确预测周围障碍的速度和位置。我们工作的一个重要方面是将感知(OF:光学流动)和规划(VO)组成部分结合起来,以便进行可靠的导航。总体而言,我们的基于学习的认知和模型规划方法的OV算法在航行时间和避免碰撞的成功率方面比以前的算法表现更好。我们的方法还提供了概率性避免碰撞算法的界限。我们强调模拟和现实世界场景中行人对海龟机器人航行的实时性表现。一个演示视频可在 https://gamma.umd.edu/ofvo上查阅。

0
下载
关闭预览

相关内容

跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Arxiv
0+阅读 · 2021年3月12日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关VIP内容
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Top
微信扫码咨询专知VIP会员