This paper addresses the task of joint multi-agent perception and planning, especially as it relates to the real-world challenge of collision-free navigation for connected self-driving vehicles. For this task, several communication-enabled vehicles must navigate through a busy intersection while avoiding collisions with each other and with obstacles. To this end, this paper proposes a learnable costmap-based planning mechanism, given raw perceptual data, that is (1) distributed, (2) uncertainty-aware, and (3) bandwidth-efficient. Our method produces a costmap and uncertainty-aware entropy map to sort and fuse candidate trajectories as evaluated across multiple-agents. The proposed method demonstrates several favorable performance trends on a suite of open-source overhead datasets as well as within a novel communication-critical simulator. It produces accurate semantic occupancy forecasts as an intermediate perception output, attaining a 72.5% average pixel-wise classification accuracy. By selecting the top trajectory, the multi-agent method scales well with the number of agents, reducing the hard collision rate by up to 57% with eight agents compared to the single-agent version.


翻译:本文涉及多试剂联合感知和规划的任务, 特别是因为它涉及到连接自驾驶车辆的无碰撞导航的现实世界挑战。 对于这项任务, 几个具有通信功能的车辆必须穿越繁忙的交叉路口, 避免彼此相撞和遇到障碍。 为此, 本文提出一个基于成本图的可学习规划机制, 考虑到原始的感知数据, 即(1) 分布的, (2) 不确定性意识和(3) 带宽效率。 我们的方法产生了一个成本图和具有不确定性的诱导图, 以便根据对多个试剂的评估, 分解和激活候选轨迹。 提议的方法显示了一套开放源间接费用数据集以及新颖的通信关键模拟器的若干有利性性性性能趋势。 它产生精确的静态占用预测, 作为一种中间感知输出, 达到平均72.5%的像素偏误差精度。 通过选择顶轨, 多试剂的尺度以及制剂的数量, 将硬碰撞率降低到57%, 与8个试剂相比, 。</s>

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员