With the development of Shor's algorithm, some nondeterministic polynomial (NP) time problems (e.g. prime factorization problems and discrete logarithm problems) may be solved in polynomial time. In recent years, although some homomorphic encryption algorithms have been proposed based on prime factorization problems, the algorithms may be cracked by quantum computing attacks. Therefore, this study proposes a post-quantum cryptography (PQC)-based homomorphic encryption method which includes the homomorphic encryption function based on a code-based cryptography method for avoiding quantum computing attacks. Subsection 3.2 proposes mathematical models to prove the feasibility of the proposed method, and Subsection 3.3 gives calculation examples to present the detailed steps of the proposed method. In experimental environments, the mainstream cryptography methods (i.e. RSA cryptography and elliptic curve cryptography (ECC)) have been compared, and the results show that the encryption time and decryption time of the proposed method are shorter than other cryptography methods. Furthermore, the proposed method is designed based on a non-negative matrix factorization problem (i.e. a NP problem) for resisting quantum computing attacks.
翻译:暂无翻译