Robots that work close to humans need to understand and use social cues to act in a socially acceptable manner. Social cues are a form of communication (i.e., information flow) between people. In this paper, a framework is introduced to detect and analyse social cues and information transfer directionality using an information-theoretic measure, namely, transfer entropy. We demonstrate the framework in three settings involving social interactions between humans: object-handover, group-joining and person-following. Results show that transfer entropy can identify information flows between agents, when and where they occur, and their relative strength. For instance, in a person-following scenario, we find that head orientation of a predictor is particularly informative, and the different times and locations that this is used to convey information to a leader influences their behaviour. Potential applications of the framework include information flow or social cue analysis for interactive robot design, or socially-aware robot planning.
翻译:与人类关系密切的机器人需要理解并使用社会线索来以社会可接受的方式行事。 社会提示是一种人与人之间沟通的形式( 即信息流动 ) 。 在本文中, 引入了一个框架来检测和分析社会提示和信息传递方向性, 使用信息理论的测量方法, 即传导 。 我们展示了在三种环境中涉及人与人之间社会互动的框架: 对象交接、 群体参与和人与人之间的社会互动。 结果显示, 传输 entropy 能够识别代理人之间的信息流动、 发生时间和地点, 及其相对强度 。 例如, 在人跟踪的情景中, 我们发现预测器的头部方向特别具有信息性, 而用于向领导人传递信息的不同时间和地点会影响他们的行为。 框架的潜在应用包括互动式机器人设计的信息流或社会认知机器人规划的社会提示分析。</s>