Although BERT-based ranking models have been commonly used in commercial search engines, they are usually time-consuming for online ranking tasks. Knowledge distillation, which aims at learning a smaller model with comparable performance to a larger model, is a common strategy for reducing the online inference latency. In this paper, we investigate the effect of different loss functions for uniform-architecture distillation of BERT-based ranking models. Here "uniform-architecture" denotes that both teacher and student models are in cross-encoder architecture, while the student models include small-scaled pre-trained language models. Our experimental results reveal that the optimal distillation configuration for ranking tasks is much different than general natural language processing tasks. Specifically, when the student models are in cross-encoder architecture, a pairwise loss of hard labels is critical for training student models, whereas the distillation objectives of intermediate Transformer layers may hurt performance. These findings emphasize the necessity of carefully designing a distillation strategy (for cross-encoder student models) tailored for document ranking with pairwise training samples.


翻译:尽管基于BERT的排名模型在商业搜索引擎中常用,但通常用于在线排序任务耗时。 知识蒸馏旨在学习一个与较大模型类似性能的较小模型,目的是学习一个与较大模型相似的小型模型,这是减少在线推断潜伏的通用战略。 在本文中,我们调查了不同损失功能对基于BERT的排名模型的统一结构蒸馏的影响。这里的“单式结构”表示教师和学生模型都存在于交叉编码结构中,而学生模型包括小规模的预培训语言模型。我们的实验结果表明,用于排序任务的最佳蒸馏配置与一般的自然语言处理任务大不相同。具体地说,当学生模型处于交叉编码结构中时,双式硬标签的丢失对于培训学生模型至关重要,而中间变异层的蒸馏目标可能损害业绩。这些结论强调,必须仔细设计一种适合文件排序的蒸馏战略(跨编码学生模型),并配对式培训样本。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员