Detecting offensive language is a challenging task. Generalizing across different cultures and languages becomes even more challenging: besides lexical, syntactic and semantic differences, pragmatic aspects such as cultural norms and sensitivities, which are particularly relevant in this context, vary greatly. In this paper, we target Chinese offensive language detection and aim to investigate the impact of transfer learning using offensive language detection data from different cultural backgrounds, specifically Korean and English. We find that culture-specific biases in what is considered offensive negatively impact the transferability of language models (LMs) and that LMs trained on diverse cultural data are sensitive to different features in Chinese offensive language detection. In a few-shot learning scenario, however, our study shows promising prospects for non-English offensive language detection with limited resources. Our findings highlight the importance of cross-cultural transfer learning in improving offensive language detection and promoting inclusive digital spaces.
翻译:攻击性语言检测是一项具有挑战性的任务。不同文化和语言之间的泛化变得更加具有挑战性:除了词汇、句法和语义的差异外,在这个背景下尤其重要的文化规范和敏感性等语用方面也会有很大的差异。在本文中,我们的目标是针对中文攻击性语言检测,并旨在研究使用来自不同文化背景(具体来说是韩国和英国)的攻击性语言检测数据的迁移学习的影响。我们发现,所谓的攻击性在具有不同文化背景的数据中具有文化特定的偏见,这对于语言模型的可迁移性产生了负面影响,并且在对中文攻击性语言检测中,经过多元文化训练的语言模型对于不同的特征非常敏感。但是,在少量数据集的情况下,我们的研究在非英文的攻击性语言检测方面显示出了很好的前景。我们的发现强调了跨文化迁移学习在改进攻击性语言检测和促进包容数字空间方面的重要性。