At present, the ubiquity method to diagnose the severity of diabetic feet (DF) depends on professional podiatrists. However, in most cases, professional podiatrists have a heavy workload, especially in underdeveloped and developing countries and regions, and there are often insufficient podiatrists to meet the rapidly growing treatment needs of DF patients. It is necessary to develop a medical system that assists in diagnosing DF in order to reduce part of the workload for podiatrists and to provide timely relevant information to patients with DF. In this paper, we have developed a system that can classify and locate Wagner ulcers of diabetic foot in real-time. First, we proposed a dataset of 2688 diabetic feet with annotations. Then, in order to enable the system to detect diabetic foot ulcers in real time and accurately, this paper is based on the YOLOv3 algorithm coupled with image fusion, label smoothing, and variant learning rate mode technologies to improve the robustness and predictive accuracy of the original algorithm. Finally, the refinements on YOLOv3 was used as the optimal algorithm in this paper to deploy into Android smartphone to predict the classes and localization of the diabetic foot with real-time. The experimental results validate that the improved YOLOv3 algorithm achieves a mAP of 91.95%, and meets the needs of real-time detection and analysis of diabetic foot Wagner Ulcer on mobile devices, such as smart phones. This work has the potential to lead to a paradigm shift for clinical treatment of the DF in the future, to provide an effective healthcare solution for DF tissue analysis and healing status.
翻译:暂无翻译