Zero-knowledge (ZK) proof systems have emerged as a promising solution for building security-sensitive applications. However, bugs in ZK applications are extremely difficult to detect and can allow a malicious party to silently exploit the system without leaving any observable trace. This paper presents Coda, a novel statically-typed language for building zero-knowledge applications. Critically, Coda makes it possible to formally specify and statically check properties of a ZK application through a rich refinement type system. One of the key challenges in formally verifying ZK applications is that they require reasoning about polynomial equations over large prime fields that go beyond the capabilities of automated theorem provers. Coda mitigates this challenge by generating a set of Coq lemmas that can be proven in an interactive manner with the help of a tactic library. We have used Coda to re-implement 79 arithmetic circuits from widely-used Circom libraries and applications. Our evaluation shows that Coda makes it possible to specify important and formally verify correctness properties of these circuits. Our evaluation also revealed 6 previously-unknown vulnerabilities in the original Circom projects.


翻译:零知识(ZK)证明系统已经成为构建安全敏感应用程序的有希望的解决方案。然而,在 ZK 应用程序中的错误非常难以检测,可能允许恶意方在不留下任何可观察的痕迹的情况下默默地利用该系统。本文介绍了 Coda,一种用于构建零知识应用程序的新型静态类型语言。关键是,Coda 通过丰富的细分类型系统可以指定和静态检查 ZK 应用程序的属性。正式验证 ZK 应用程序的一个关键挑战是它们需要推理大质数域上的多项式方程,超出了自动定理证明器的能力范围。Coda 通过生成一组 Coq 引理来缓解这个挑战,这些引理可以借助策略库进行交互式证明。我们使用 Coda 重新实现了常用 Circom 库和应用程序中的 79 个算术电路。我们的评估表明,Coda 使得指定这些电路的重要性和形式验证正确性属性成为可能。我们的评估还揭示了原始 Circom 项目中的 6 个以前未知的漏洞。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
35+阅读 · 2021年8月2日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员