In a graph where vertices have preferences over their neighbors, a matching is called popular if it does not lose a head-to-head election against any other matching when the vertices vote between the matchings. Popular matchings can be seen as an intermediate category between stable matchings and maximum-size matchings. In this paper, we aim to maximize the utility of a matching that is popular but admits only a few blocking edges. For general graphs already finding a popular matching with at most one blocking edge is NP-complete. For bipartite instances, we study the problem of finding a maximum-utility popular matching with a bound on the number (or more generally, the cost) of blocking edges applying a multivariate approach. We show classical and parameterized hardness results for severely restricted instances. By contrast, we design an algorithm for instances where preferences on one side admit a master list, and show that this algorithm is optimal.
翻译:在脊椎偏好邻居的图表中,如果脊椎在匹配之间投票时不会失去头对头选举,匹配就被称为流行。 大众匹配可以被视为稳定匹配和最大尺寸匹配之间的中间类别。 在本文中, 我们的目标是尽量扩大流行匹配的效用, 但只承认几个阻塞边缘。 对于已经在大多数阻塞边缘找到热匹配的普通图表来说, NP 是完整的。 对于两边的情况, 我们研究在使用多变量方法时, 找到与数字( 或更一般地说, 成本) 约束的阻塞边缘的最大通用匹配的问题。 我们为严格限制的案例中显示经典和参数化的硬性结果。 相反, 我们为一方的偏好认可主列表的情形设计一种算法, 并显示这种算法是最佳的。