We consider a finite element method for elliptic equation with heterogeneous and possibly high-contrast coefficients based on primal hybrid formulation. A space decomposition as in FETI and BDCC allows a sequential computations of the unknowns through elliptic problems and satisfies equilibrium constraints. One of the resulting problems is non-local but with exponentially decaying solutions, enabling a practical scheme where the basis functions have an extended, but still local, support. We obtain quasi-optimal a priori error estimates for low-contrast problems assuming minimal regularity of the solutions. To also consider the high-contrast case, we propose a variant of our method, enriching the space solution via local eigenvalue problems and obtaining optimal a priori error estimate that mitigates the effect of having coefficients with different magnitudes and again assuming no regularity of the solution. The technique developed is dimensional independent and easy to extend to other problems such as elasticity.
翻译:暂无翻译