Prediction models for clinical outcomes may be developed using a source dataset and additionally applied to new settings. Towards model external validation and model updating in the new setting, one procedure is model modification learning that involves the dual goals of recalibrating overall predictions as well as revising individual feature effects. Modification learning generally requires the collection of an adequate sample of true outcome labels from the new setting, which is frequently an expensive and time-consuming process, as it involves abstraction by human clinical experts. To reduce the abstraction burden for such new data collection, we propose a class of designs based on original model scores and their associated outcome predictions. We provide mathematical justification that the general predictive score sampling class results in valid samples for analysis. Then, we focus attention specifically on a stratified sampling procedure that we call predictive case control (PCC) sampling, which allows the dual modification learning goals to be achieved at a smaller sample size compared to simple random sampling (SRS). PCC sampling intentionally over-represents subjects with informative scores, where we suggest using the D-optimality and Binary Entropy information functions to summarize sample information. For design evaluation within the PCC class, we provide a computational framework to estimate and visualize empirical response surfaces of the proposed information functions. We demonstrate the benefit of using PCC designs for modification learning, relative to SRS, through Monte Carlo simulation. Finally, using radiology report data from the Lumbar Imaging with Reporting of Epidemiology (LIRE) study, we illustrate the application of PCC for new outcome label abstraction and subsequent modification learning across imaging modalities.


翻译:临床结果的预测模型可以使用源数据集来开发,并额外应用于新的设置。为了在新的设置中进行模拟外部验证和模型更新,一个程序是模型修改学习,涉及重新校正总体预测以及修改个别特性效应的双重目标。修改学习通常需要从新设置中收集出一个适当的真实结果标签样本,因为新设置往往是一个昂贵和耗时的过程,因为它涉及人类临床专家的抽取。为了减少这种新的数据收集的抽象负担,我们建议根据原始模型评分及其相关结果预测来进行一类设计。我们提供数学理由,说明一般预测性评分抽样类别在有效分析样本中的结果。然后,我们特别注意一个分级抽样程序,我们称之为预测性案例控制(PCC)取样,这样就可以在比简单的随机抽样(SRS)更小的样本规模上实现双重修改学习目标。PCC对信息进行有意过多的抽样取样,我们建议使用D-优化和Binary Etroprip 信息功能来总结样本信息。我们用SCC的图像模型进行设计评估,我们用SAL Realimal A 进行最后的模型评估,我们使用Simalalalalalal 进行Simalal report 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
7+阅读 · 2020年10月9日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员