The Metropolis algorithm (MA) is a classic stochastic local search heuristic. It avoids getting stuck in local optima by occasionally accepting inferior solutions. To better and in a rigorous manner understand this ability, we conduct a mathematical runtime analysis of the MA on the CLIFF benchmark. Apart from one local optimum, cliff functions are monotonically increasing towards the global optimum. Consequently, to optimize a cliff function, the MA only once needs to accept an inferior solution. Despite seemingly being an ideal benchmark for the MA to profit from its main working principle, our mathematical runtime analysis shows that this hope does not come true. Even with the optimal temperature (the only parameter of the MA), the MA optimizes most cliff functions less efficiently than simple elitist evolutionary algorithms (EAs), which can only leave the local optimum by generating a superior solution possibly far away. This result suggests that our understanding of why the MA is often very successful in practice is not yet complete. Our work also suggests to equip the MA with global mutation operators, an idea supported by our preliminary experiments.


翻译:Metropolis算法 (MA) 是一种经典的随机局部搜索启发式算法。它通过偶尔接受次优解来避免陷入局部最优解。为了更好地并以严格的方式理解这种能力,我们对CLIFF基准上的MA进行了数学运行时间分析。除了一个局部最优解,cliff函数朝向全局最优解单调递增。因此,要优化cliff函数,MA只需要接受一次较差的解。尽管这似乎是MA从其主要工作原理中获益的理想基准,但我们的数学运行时间分析显示,即使具有最佳温度(MA的唯一参数),MA优化大多数cliff函数的效率也不如简单的精英遗传算法(EAs),EAs只能通过产生可能远离的更优解来离开局部最优解。该结果表明,我们对MA为什么在实践中经常非常成功的理解还不完全。我们的工作还建议为MA配备全局变异算子,这个想法得到了我们的初步实验的支持。

0
下载
关闭预览

相关内容

局部最优,是指对于一个问题的解在一定范围或区域内最优,或者说解决问题或达成目标的手段在一定范围或限制内最优。在应用数学和计算机科学中,优化问题的局部最优是在候选解决方案的相邻集合内最优(最大或最小)的解决方案。 这与全局最优相反,后者是所有可能的解决方案中的最优解决方案,而不仅仅是在特定值附近的最优解决方案。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员