We study the conservation properties of the Hermite-discontinuous Galerkin (Hermite-DG) approximation of the Vlasov-Maxwell equations. In this semi-discrete formulation, the total mass is preserved independently for every plasma species. Further, an energy invariant exists if central numerical fluxes are used in the DG approximation of Maxwell's equations, while a dissipative term is present when upwind fluxes are employed. In general, traditional temporal integrators might fail to preserve invariants associated with conservation laws (at the continuous or semi-discrete level) during the time evolution. Hence, we analyze the capability of explicit and implicit Runge-Kutta (RK) temporal integrators to preserve such invariants. Since explicit RK methods can only ensure preservation of linear invariants but do not provide any control on the system energy, we consider modified explicit RK methods in the family of relaxation Runge-Kutta methods (RRK). These methods can be tuned to preserve the energy invariant at the continuous or semi-discrete level, a distinction that is important when upwind fluxes are used in the discretization of Maxwell's equations since upwind provides a numerical source of energy dissipation that is not present when central fluxes are used. We prove that the proposed methods are able to preserve the energy invariant and to maintain the semi-discrete energy dissipation (if present) according to the discretization of Maxwell's equations. An extensive set of numerical experiments corroborates the theoretical findings. It also suggests that maintaining the semi-discrete energy dissipation when upwind fluxes are used leads to an overall better accuracy of the method relative to using upwind fluxes while forcing exact energy conservation.
翻译:我们研究的是Vlasov-Maxwell等式的赫尔米特不连续的Galerkin(Hermite-DG)近似值的保存特性。 在这种半分解配方中,总质量为每个等离子物种独立保存。 此外,如果在最大韦尔等式的DG近似中使用中央数字通量,而当使用上风通量时,则存在一个消散的术语。一般来说,传统时间变速器可能无法在时间演变期间保存与保护法(持续或半分解水平的)相关的变异体。因此,我们分析显性和隐含的 Ruge- Kutta(RK) 时间变异体的能力,以保存这些变异体(持续或半分解水平的) 。由于使用明确的浓缩方法只能确保线性变异体的保存,但不能对系统能源进行任何控制,因此,我们考虑在放松 Rentege- Kutta 方法(RRK) 中,这些方法可能无法在总体的轨变异性中保存能量的变异性(持续或半分解到不断变异的变异性) 。 当使用时, 当使用 最大变的能量的能量的变异化时, 正在使用的能量变的变的变的变法是使用的能量的变的变法是使用的变的变的变异变的变法的变的变的变的变的变的变的变的变的变法是, 使用的变的变的变的变的变的变法是, 的变的变的变的变的变的变的变的变的变的变的变法的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变。的变的变的变的变的变的变的变的变的变的变的变的变的变法是的变的变的变的变的变的变的变的变的变的变的变法是的变的变的变的变的变的变的变的变的变的变的变的变的变的变的