The emotion recognition in conversation (ERC) task aims to predict the emotion label of an utterance in a conversation. Since the dependencies between speakers are complex and dynamic, which consist of intra- and inter-speaker dependencies, the modeling of speaker-specific information is a vital role in ERC. Although existing researchers have proposed various methods of speaker interaction modeling, they cannot explore dynamic intra- and inter-speaker dependencies jointly, leading to the insufficient comprehension of context and further hindering emotion prediction. To this end, we design a novel speaker modeling scheme that explores intra- and inter-speaker dependencies jointly in a dynamic manner. Besides, we propose a Speaker-Guided Encoder-Decoder (SGED) framework for ERC, which fully exploits speaker information for the decoding of emotion. We use different existing methods as the conversational context encoder of our framework, showing the high scalability and flexibility of the proposed framework. Experimental results demonstrate the superiority and effectiveness of SGED.
翻译:谈话(ERC)任务中的情感识别旨在预测谈话中发音的情感标签。由于发言者之间的依赖性是复杂和动态的,包括发言内部和发言之间的依赖性,因此制作针对发言者的信息的模型是ERC的一个关键作用。虽然现有的研究人员已经提出了各种演讲者互动模式,但他们无法共同探索动态的内和发言之间依赖性,导致对背景的理解不够,进一步阻碍情绪预测。为此,我们设计了一个新型的演讲者模型计划,以动态的方式共同探索发言内部和发言之间的依赖性。此外,我们提议为ERC建立一个议长-导游-演讲者框架(SGED),充分利用演讲者信息解密情绪。我们使用不同的现有方法作为我们框架的谈话背景的连接器,显示拟议框架的高度可变性和灵活性。实验结果显示了SGED的优越性和有效性。