In this note, we provide an overarching analysis of primal-dual dynamics associated to linear equality-constrained optimization problems using contraction analysis. For the well-known standard version of the problem: we establish convergence under convexity and the contracting rate under strong convexity. Then, for a canonical distributed optimization problem, we use partial contractivity to establish global exponential convergence of its primal-dual dynamics. As an application, we propose a new distributed solver for the least-squares problem with the same convergence guarantees. Finally, for time-varying versions of both centralized and distributed primal-dual dynamics, we exploit their contractive nature to establish bounds on their tracking error. To support our analyses, we introduce novel results on contraction theory.
翻译:在本说明中,我们利用收缩分析,对线性平等限制优化问题的原始两极动态进行总体分析。对于问题众所周知的标准版本:我们在精度和合同率下建立趋同;然后,对于发光性分布优化问题,我们使用部分合同性来建立其原始两极动态的全球指数趋同。作为一个应用程序,我们提出一个新的分布式解决方案,用于最小方问题,同时提供相同的趋同保证。最后,对于集中和分布的初等两极动态的有时间变化的版本,我们利用合同性来设定其追踪错误的界限。为了支持我们的分析,我们提出了收缩理论的新结果。