The Laplace-Beltrami problem on closed surfaces embedded in three dimensions arises in many areas of physics, including molecular dynamics (surface diffusion), electromagnetics (harmonic vector fields), and fluid dynamics (vesicle deformation). In particular, the Hodge decomposition of vector fields tangent to a surface can be computed by solving a sequence of Laplace-Beltrami problems. Such decompositions are very important in magnetostatic calculations and in various plasma and fluid flow problems. In this work we present an overview of the $L^2$-invertibility of the Laplace-Beltrami operator on piecewise smooth surfaces, extending earlier weak formulations and integral equation approaches on smooth surfaces. We then provide high-order numerical examples along surfaces of revolution to support our analysis, and discuss numerical extensions to general surfaces embedded in three dimensions.
翻译:嵌入三个维度的封闭表面的Laplace-Beltrami问题在许多物理领域出现,包括分子动态(地表扩散)、电磁场(合力矢量场)和流体动态(卵质变形),特别是,通过解决Laplace-Beltrami问题的序列,可以计算出矢量场正切度向表面的Hodge分解过程。这种分解在磁层计算以及各种等离子体和流体问题中非常重要。在这项工作中,我们概要介绍了Laplace-Beltrami操作员在平滑表面的不可逆性($L2美元),在平滑的表面推广早期微弱的配方和整体方程方法。我们随后在革命表面提供高层次的数字示例,以支持我们的分析,并讨论三个维度嵌入的普通表面的数字扩展。