End-to-end text-to-speech synthesis (TTS) can generate highly natural synthetic speech from raw text. However, rendering the correct pitch accents is still a challenging problem for end-to-end TTS. To tackle the challenge of rendering correct pitch accent in Japanese end-to-end TTS, we adopt PnG~BERT, a self-supervised pretrained model in the character and phoneme domain for TTS. We investigate the effects of features captured by PnG~BERT on Japanese TTS by modifying the fine-tuning condition to determine the conditions helpful inferring pitch accents. We manipulate content of PnG~BERT features from being text-oriented to speech-oriented by changing the number of fine-tuned layers during TTS. In addition, we teach PnG~BERT pitch accent information by fine-tuning with tone prediction as an additional downstream task. Our experimental results show that the features of PnG~BERT captured by pretraining contain information helpful inferring pitch accent, and PnG~BERT outperforms baseline Tacotron on accent correctness in a listening test.
翻译:终端到终端文本到语音合成(TTS) 可以从原始文本中产生高度自然合成的合成言语。 但是,提供正确的音调对于终端到终端 TTS来说仍然是一个挑战性的问题。 要应对在日本端到端 TTS中正确音调的挑战, 我们采用PnG~BERT, 这是TTS在字符和电话域中自我监管的预先培训模型。 我们调查PnG~BERT所捕捉的功能对日本 TTS 的影响, 修改微调条件以确定有助于推断音调口音的条件。 我们通过在 TTS 测试中改变精调层的数量, 将PnG~BERT的文字内容从以文本为导向, 转向语音导向。 此外, 我们通过微调和音调预测作为额外的下游任务, 教 PnG~BERT的音调调信息。 我们的实验结果表明, 通过预培训所捕捉的PnG~BERT的特征包含有助于推导投音口口音的信息, 以及 PnG~BERT在监听测试中用于口腔校正基准塔可天。