Developing high-performing predictive models for large tabular data sets is a challenging task. The state-of-the-art methods are based on expert-developed model ensembles from different supervised learning methods. Recently, automated machine learning (AutoML) is emerging as a promising approach to automate predictive model development. Neural architecture search (NAS) is an AutoML approach that generates and evaluates multiple neural network architectures concurrently and improves the accuracy of the generated models iteratively. A key issue in NAS, particularly for large data sets, is the large computation time required to evaluate each generated architecture. While data-parallel training is a promising approach that can address this issue, its use within NAS is difficult. For different data sets, the data-parallel training settings such as the number of parallel processes, learning rate, and batch size need to be adapted to achieve high accuracy and reduction in training time. To that end, we have developed AgEBO-Tabular, an approach to combine aging evolution (AgE), a parallel NAS method that searches over neural architecture space, and an asynchronous Bayesian optimization method for tuning the hyperparameters of the data-parallel training simultaneously. We demonstrate the efficacy of the proposed method to generate high-performing neural network models for large tabular benchmark data sets. Furthermore, we demonstrate that the automatically discovered neural network models using our method outperform the state-of-the-art AutoML ensemble models in inference speed by two orders of magnitude while reaching similar accuracy values.


翻译:开发大型表层数据集高性能预测模型是一项艰巨的任务。 最先进的方法基于专家开发的模型,来自不同监督的学习方法。 最近,自动化机器学习(Automil)正在成为自动预测模型开发的一个很有希望的方法。 神经结构搜索(NAS)是一种自动ML方法,它同时生成和评估多种神经网络结构,提高生成模型的迭接性准确性。NAS的一个关键问题是,特别是大型数据集,评估每个生成的架构所需的大量计算时间。 虽然数据单流培训是一种很有希望的方法,可以解决这一问题,但在NAS内部却很难使用。 对于不同的数据集,数据单数培训设置,如平行进程的数量、学习率和批量规模,需要调整,以达到高准确性和减少培训时间。 为此,我们开发了AGEBO-Tabulal, 一种将不断演变的进化(AgE)方法, 一种平行的NAS方法,可以搜索神经结构空间, 而在NAS培训中, 也很难使用一个类似的方法, 模拟模型, 用来演示我们高性系统模型, 以同步的系统化的方法, 模拟, 以演示我们高压式的系统模拟的系统, 以演示高压方法, 演示我们高压式的系统 。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年10月25日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
6+阅读 · 2021年10月25日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员