Taking full advantage of the excellent performance of StyleGAN, style transfer-based face swapping methods have been extensively investigated recently. However, these studies require separate face segmentation and blending modules for successful face swapping, and the fixed selection of the manipulated latent code in these works is reckless, thus degrading face swapping quality, generalizability, and practicability. This paper proposes a novel and end-to-end integrated framework for high resolution and attribute preservation face swapping via Adaptive Latent Representation Learning. Specifically, we first design a multi-task dual-space face encoder by sharing the underlying feature extraction network to simultaneously complete the facial region perception and face encoding. This encoder enables us to control the face pose and attribute individually, thus enhancing the face swapping quality. Next, we propose an adaptive latent codes swapping module to adaptively learn the mapping between the facial attributes and the latent codes and select effective latent codes for improved retention of facial attributes. Finally, the initial face swapping image generated by StyleGAN2 is blended with the facial region mask generated by our encoder to address the background blur problem. Our framework integrating facial perceiving and blending into the end-to-end training and testing process can achieve high realistic face-swapping on wild faces without segmentation masks. Experimental results demonstrate the superior performance of our approach over state-of-the-art methods.
翻译:利用StyleGAN的出色性能,我们最近广泛调查了基于风格转换的面部互换方法。然而,这些研究需要分别的面部分割和混合模块,以便成功地面部互换,而固定地选择这些作品中被操纵的潜在代码是鲁莽的,从而降低面部互换质量、通用性和实用性。本文件提出了一个关于通过适应性边端代表学习高分辨率和属性互换面部的新型和端对端综合框架。具体地说,我们首先设计了一个多任务双空面部互换编码器,通过共享基本特征提取网络来同时完成面部区域感知和面部编码。这个编码器使我们能够单独控制面部面部的面部和属性,从而提高面部互换质量。接下来,我们提出一个适应性的潜在潜在代码互换模块,以适应性地学习面部属性和潜在代码之间的绘图,并选择有效的潜在代码来改进面部形象的保存。最后,StyleGAN2生成的面部图像互换面部图像最初面部与由我们的编码生成的面部区域面部面部面部面具混合,以解决背景模糊问题。我们关于面部面部面部面部面部面部面部面部面部和面部高面部分析的模拟的测试和面部测试框架,不经过对面部分析的升级的实验测试,在最后的实验测试中可以实现对面部分析的实验,在最后的实验测试,在最后测试中实现对面部测试。</s>