For a successful deployment of physical Human-Robot Cooperation (pHRC), humans need to be able to teach robots new motor skills quickly. Probabilistic movement primitives (ProMPs) are a promising method to encode a robot's motor skills learned from human demonstrations in pHRC settings. However, most algorithms to learn ProMPs from human demonstrations operate in batch mode, which is not ideal in pHRC. In this paper we propose a new learning algorithm to learn ProMPs incrementally in pHRC settings. Our algorithm incorporates new demonstrations sequentially as they arrive, allowing humans to observe the robot's learning progress and incrementally shape the robot's motor skill. A built in forgetting factor allows for corrective demonstrations resulting from the human's learning curve or changes in task constraints. We compare the performance of our algorithm to existing batch ProMP algorithms on reference data generated from a pick-and-place task at our lab. Furthermore, we show in a proof of concept study on a Franka Emika Panda how the forgetting factor allows us to adopt changes in the task. The incremental learning algorithm presented in this paper has the potential to lead to a more intuitive learning progress and to establish a successful cooperation between human and robot faster than training in batch mode.
翻译:为了成功部署人体-机器人合作(pHRC),人类需要能够迅速教授机器人新的运动技能。概率运动原始(ProMPs)是将机器人在PHRC环境中的人类演示中学到的运动技能编码起来的一个很有希望的方法。然而,从人类演示中学习ProMP的多数算法都以批量模式运作,这在pHRC中并不理想。在本文中,我们提出一种新的学习算法,以在 pHRC 设置中逐步学习ProMP。我们的算法包含在机器人到达时按顺序排列的新演示,允许人类观察机器人的学习进展并逐步塑造机器人的运动技能。在遗忘因素中构建的可因人类学习曲线或任务限制的变化而导致的纠正演示。我们比较我们从人类演示中学习ProMP算法的功能与从我们实验室的选位任务中获得的参考数据的现有批量 ProMP算法的性能。此外,我们在概念研究中展示了弗朗卡·埃米卡·潘达(Franka Emika Panda) 的遗忘因素如何允许我们在任务中采用变化。在本文中提供的递增学算法式算法中有可能在机器人和更成功的学习方式上建立一种机器人之间的学习模式。