Dynamic Movement Primitives (DMPs) is a framework for learning a point-to-point trajectory from a demonstration. Despite being widely used, DMPs still present some shortcomings that may limit their usage in real robotic applications. Firstly, at the state of the art, mainly Gaussian basis functions have been used to perform function approximation. Secondly, the adaptation of the trajectory generated by the DMP heavily depends on the choice of hyperparameters and the new desired goal position. Lastly, DMPs are a framework for `one-shot learning', meaning that they are constrained to learn from a unique demonstration. In this work, we present and motivate a new set of basis functions to be used in the learning process, showing their ability to accurately approximate functions while having both analytical and numerical advantages w.r.t. Gaussian basis functions. Then, we show how to use the invariance of DMPs w.r.t. affine transformations to make the generalization of the trajectory robust against both the choice of hyperparameters and new goal position, performing both synthetic tests and experiments with real robots to show this increased robustness. Finally, we propose an algorithm to extract a common behavior from multiple observations, validating it both on a synthetic dataset and on a dataset obtained by performing a task on a real robot.


翻译:动态动态初始值( DMPs) 是一个从演示中学习点到点轨迹的框架。 尽管DMPs 被广泛使用, 但仍然存在一些可能会限制其在真正的机器人应用中的使用的一些缺陷。 首先, 在最先进的状态下, 主要是高斯基函数已被用于功能近似。 其次, DMP 生成的轨迹的调整很大程度上取决于超参数的选择和新的预期目标位置。 最后, DMPs 是一个“ 一射学习” 的框架, 意味着他们只能从一个独特的演示中学习。 在这项工作中, 我们提出并激励一套新的基础功能, 可能会限制其在真正的机器人应用中的使用。 首先, 显示他们准确估计功能的能力, 同时拥有分析和数字上的优势 w.r.t. 高斯基函数功能来运行。 第二, DMPs w.r.t. 生成的轨迹的调整很大程度上取决于对超光速度参数和新目标位置的选择。 最后, 我们提议如何使用不偏差的轨迹, 使轨迹与选择超光度计和新目标位置相适应, 进行合成测试和实验, 与实际机器人一起进行合成测试, 演示, 以显示一种更稳健的模型。

0
下载
关闭预览

相关内容

专知会员服务
81+阅读 · 2021年7月31日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年10月8日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员