As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
翻译:由于数据越来越多地储存在不同的筒仓和社会中,人们越来越了解数据隐私问题,传统的人工智能(AI)模式集中培训正在面临效率和隐私挑战。最近,联合会学习(FL)作为一种替代解决办法出现,在这一新的现实中继续蓬勃发展。现有的FL协议设计已经证明很容易成为系统内外的对手,损害数据隐私和系统稳健性。除了培训强大的全球模型外,设计具有隐私保障和抵制不同类型对手的FL系统至关重要。我们在本文件中就这一专题进行第一次全面调查。我们通过简要介绍FL概念和独特的分类学,包括:(1) 威胁模型;(2) 毒害攻击和防御强健性;(3) 推断攻击和防范隐私,我们对这一重要专题进行了无障碍审查。我们强调直觉、关键技术以及各种攻击和防御所采用的基本假设。最后,我们讨论了有希望的未来研究方向,以便实现稳健和隐私保护联合学习。