Recent works exploring deep learning application to dynamical systems modeling have demonstrated that embedding physical priors into neural networks can yield more effective, physically-realistic, and data-efficient models. However, in the absence of complete prior knowledge of a dynamical system's physical characteristics, determining the optimal structure and optimization strategy for these models can be difficult. In this work, we explore methods for discovering neural state space dynamics models for system identification. Starting with a design space of block-oriented state space models and structured linear maps with strong physical priors, we encode these components into a model genome alongside network structure, penalty constraints, and optimization hyperparameters. Demonstrating the overall utility of the design space, we employ an asynchronous genetic search algorithm that alternates between model selection and optimization and obtains accurate physically consistent models of three physical systems: an aerodynamics body, a continuous stirred tank reactor, and a two tank interacting system.
翻译:探索动态系统模型的深层学习应用的近期工作表明,将物理前科嵌入神经网络可以产生更加有效、现实和数据效率更高的模型,然而,在事先对动态系统物理特征缺乏全面了解的情况下,确定这些模型的最佳结构和优化战略可能很困难。在这项工作中,我们探索了发现神经状态空间动态模型的方法,用于系统识别。从以块为主的州空间模型和结构清晰的直线图的设计空间开始,我们将这些组成部分与网络结构、罚款限制和优化超参数一起编码成一个模型基因组。我们展示了设计空间的总体效用,我们采用了非同步的基因搜索算法,在模型选择和优化之间进行替代,并获得了三个物理系统的精确一致模型:一个空气动力体,一个连续振动的坦克反应堆,以及两个坦克互动系统。