We propose a physics-based method to learn environmental fields (EFs) using a mobile robot. Common purely data-driven methods require prohibitively many measurements to accurately learn such complex EFs. Alternatively, physics-based models provide global knowledge of EFs but require experimental validation, depend on uncertain parameters, and are intractable for mobile robots. To address these challenges, we propose a Bayesian framework to select the most likely physics-based models of EFs in real-time, from a pool of numerical solutions generated offline as a function of the uncertain parameters. Specifically, we focus on turbulent flow fields and utilize Gaussian processes (GPs) to construct statistical models for them, using the pool of numerical solutions to inform their prior mean. To incorporate flow measurements into these GPs, we control a custom-built mobile robot through a sequence of waypoints that maximize the information content of the measurements. We experimentally demonstrate that our proposed framework constructs a posterior distribution of the flow field that better approximates the real flow compared to the prior numerical solutions and purely data-driven methods.
翻译:我们建议一种基于物理的方法,用移动机器人来学习环境领域。普通的纯数据驱动方法要求大量测量数据,以便准确学习如此复杂的EF。或者,基于物理的模式提供对EF的全球知识,但需要实验性验证,取决于不确定的参数,并且对移动机器人来说是难以解决的。为了应对这些挑战,我们提议了一个贝叶斯框架,以便实时选择最有可能的基于物理的EF模型,从作为不确定参数的函数从离线产生的数字解决方案集合中选择。具体地说,我们侧重于动荡流字段,利用高斯进程(GPs)来为其构建统计模型,利用数字解决方案集合来告知其先前的平均值。为了将流量测量结果纳入这些GPs,我们通过一系列路径控制定制的移动机器人,从而最大限度地增加测量信息内容。我们实验性地证明,我们提议的框架构建了流动字段的后方位分布,比先前的数字解决方案和纯数据驱动的方法更接近实际流动。