Mesh-based simulations are central to modeling complex physical systems in many disciplines across science and engineering. Mesh representations support powerful numerical integration methods and their resolution can be adapted to strike favorable trade-offs between accuracy and efficiency. However, high-dimensional scientific simulations are very expensive to run, and solvers and parameters must often be tuned individually to each system studied. Here we introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks. Our model can be trained to pass messages on a mesh graph and to adapt the mesh discretization during forward simulation. Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth. The model's adaptivity supports learning resolution-independent dynamics and can scale to more complex state spaces at test time. Our method is also highly efficient, running 1-2 orders of magnitude faster than the simulation on which it is trained. Our approach broadens the range of problems on which neural network simulators can operate and promises to improve the efficiency of complex, scientific modeling tasks.
翻译:网状模拟对于在科学和工程的多个学科中模拟复杂的物理系统至关重要。网状表示支持强大的数字集成方法,其分辨率可以调整,以在准确性和效率之间作出有利的权衡。然而,高维科学模拟运行费用非常昂贵,解决问题的方法和参数必须经常根据每个研究的系统分别调整。这里我们介绍MeshGraphNet,这是一个利用图形神经网络学习网状模拟的框架。我们的模型可以接受培训,在网状图上传递信息,在前方模拟期间调整网状分解。我们的结果表明,它可以准确预测广泛的物理系统的动态,包括空气动力学、结构力学和布料。模型的适应性支持学习分辨率独立的动态,在测试时可以向更复杂的状态空间扩展。我们的方法效率也很高,比模拟所训练的模拟速度更快,运行1-2级的量级命令。我们的方法扩大了神经网络模拟器可以操作的问题的范围,并有望提高复杂、科学建模任务的效率。