This paper proposes GraviCap, i.e., a new approach for joint markerless 3D human motion capture and object trajectory estimation from monocular RGB videos. We focus on scenes with objects partially observed during a free flight. In contrast to existing monocular methods, we can recover scale, object trajectories as well as human bone lengths in meters and the ground plane's orientation, thanks to the awareness of the gravity constraining object motions. Our objective function is parametrised by the object's initial velocity and position, gravity direction and focal length, and jointly optimised for one or several free flight episodes. The proposed human-object interaction constraints ensure geometric consistency of the 3D reconstructions and improved physical plausibility of human poses compared to the unconstrained case. We evaluate GraviCap on a new dataset with ground-truth annotations for persons and different objects undergoing free flights. In the experiments, our approach achieves state-of-the-art accuracy in 3D human motion capture on various metrics. We urge the reader to watch our supplementary video. Both the source code and the dataset are released; see http://4dqv.mpi-inf.mpg.de/GraviCap/.


翻译:本文建议GraviCap, 也就是说, 一种用单向的 RGB 视频对3D 人类运动进行无标记联合3D 人类运动捕获和物体轨迹估计的新方法。 我们关注在自由飞行中部分观测到的物体的场景。 与现有的单向方法相比, 我们可以恢复尺寸、 物体轨迹以及人骨长度, 以及地面飞机的方向, 这是因为人们意识到了重力限制物体动作。 我们的客观功能被该物体最初的速度和位置、 重力方向和焦距的长度所仿照, 并共同优化一个或几个自由飞行事件。 提议的人体物体相互作用限制确保了3D 重建的几何一致性, 并改进了与未受限制的物体相比人体外表的物理可视性。 我们用新的数据集对正在接受自由飞行的人和不同物体进行地面图解。 在实验中, 我们的方法在3D 人类运动的捕捉取中达到了状态的精确度, 我们敦促读者观看我们的补充视频。 源码和数据集都发布; http:// gapin/ grap. 。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
专知会员服务
31+阅读 · 2021年6月12日
机器人运动轨迹的模仿学习综述
专知会员服务
44+阅读 · 2021年6月8日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
专知会员服务
60+阅读 · 2020年3月19日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
0+阅读 · 2021年10月14日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员