This paper proposes GraviCap, i.e., a new approach for joint markerless 3D human motion capture and object trajectory estimation from monocular RGB videos. We focus on scenes with objects partially observed during a free flight. In contrast to existing monocular methods, we can recover scale, object trajectories as well as human bone lengths in meters and the ground plane's orientation, thanks to the awareness of the gravity constraining object motions. Our objective function is parametrised by the object's initial velocity and position, gravity direction and focal length, and jointly optimised for one or several free flight episodes. The proposed human-object interaction constraints ensure geometric consistency of the 3D reconstructions and improved physical plausibility of human poses compared to the unconstrained case. We evaluate GraviCap on a new dataset with ground-truth annotations for persons and different objects undergoing free flights. In the experiments, our approach achieves state-of-the-art accuracy in 3D human motion capture on various metrics. We urge the reader to watch our supplementary video. Both the source code and the dataset are released; see http://4dqv.mpi-inf.mpg.de/GraviCap/.
翻译:本文建议GraviCap, 也就是说, 一种用单向的 RGB 视频对3D 人类运动进行无标记联合3D 人类运动捕获和物体轨迹估计的新方法。 我们关注在自由飞行中部分观测到的物体的场景。 与现有的单向方法相比, 我们可以恢复尺寸、 物体轨迹以及人骨长度, 以及地面飞机的方向, 这是因为人们意识到了重力限制物体动作。 我们的客观功能被该物体最初的速度和位置、 重力方向和焦距的长度所仿照, 并共同优化一个或几个自由飞行事件。 提议的人体物体相互作用限制确保了3D 重建的几何一致性, 并改进了与未受限制的物体相比人体外表的物理可视性。 我们用新的数据集对正在接受自由飞行的人和不同物体进行地面图解。 在实验中, 我们的方法在3D 人类运动的捕捉取中达到了状态的精确度, 我们敦促读者观看我们的补充视频。 源码和数据集都发布; http:// gapin/ grap. 。