This paper proposes new, end-to-end deep reinforcement learning algorithms for learning two-player zero-sum Markov games. Different from prior efforts on training agents to beat a fixed set of opponents, our objective is to find the Nash equilibrium policies that are free from exploitation by even the adversarial opponents. We propose (a) Nash-DQN algorithm, which integrates the deep learning techniques from single DQN into the classic Nash Q-learning algorithm for solving tabular Markov games; (b) Nash-DQN-Exploiter algorithm, which additionally adopts an exploiter to guide the exploration of the main agent. We conduct experimental evaluation on tabular examples as well as various two-player Atari games. Our empirical results demonstrate that (i) the policies found by many existing methods including Neural Fictitious Self Play and Policy Space Response Oracle can be prone to exploitation by adversarial opponents; (ii) the output policies of our algorithms are robust to exploitation, and thus outperform existing methods.


翻译:本文为学习双玩者零和马尔科夫游戏提出了新的、端到端的强化深层学习算法。 与以前训练代理人击败一组固定对手的努力不同,我们的目标是找到甚至没有敌对对手利用的纳什平衡政策。 我们提议:(a) Nash-DQN 算法,将单一DQN的深层学习技巧纳入传统的纳什Q-学习算法,用于解决表格马科夫游戏;(b) Nash-DQN-Expliter 算法,该算法进一步采用一个剥削者来指导主要代理人的探索。 我们对表格范例以及各种双玩家阿塔里游戏进行实验性评价。我们的经验结果表明,(i) 许多现有方法(包括神经自律游戏和政策空间反应奥雷奇)发现的政策很容易被对抗对手利用;(ii) 我们的算法输出政策坚固可加以利用,从而超越现有方法。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年11月8日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员