We introduce a new framework for efficient sampling from complex probability distributions, using a combination of normalizing flows and elliptical slice sampling (Murray et al., 2010). The core idea is to learn a diffeomorphism, via normalizing flows, that maps the non-Gaussian structure of our target distribution to an approximately Gaussian distribution. We can then sample from our transformed distribution using the elliptical slice sampler, which is an efficient and tuning-free Markov chain Monte Carlo (MCMC) algorithm. The samples are then pulled back using an inverse normalizing flow to yield samples which approximate the stationary target distribution of interest. Our transformed elliptical slice sampler (TESS) is efficiently designed for modern computer architectures, where its adaptation mechanism utilizes parallel cores to rapidly run multiple Markov chains for only a few iterations. Numerical demonstrations show that TESS produce Monte Carlo samples from the target distribution with lower autocorrelation compared to non-transformed samplers. Additionally, assuming a sufficiently flexible diffeomorphism, TESS demonstrates significant improvements in efficiency when compared to gradient-based proposals designed to run on parallel computer architectures.
翻译:我们采用正常流和椭圆切片抽样相结合的方法,引入了从复杂概率分布中有效取样的新框架(Murray等人,2010年)。核心思想是通过正常流学二光形态学,通过正常流将目标分布的非高加索结构映射为约高山分布图。然后,我们可以使用电子切片采样器从我们经过转变的分布中取样,这是一个高效和无调控的Markov链Monte Carlo(MCMC)算法。然后,利用反常流提取样品,以产生接近利益固定目标分布的样品。我们经过改造的椭圆切片采样器(TESS)为现代计算机结构有效设计,其适应机制利用平行岩心迅速运行多个Markov链,只进行少量的循环。数字演示显示,TESS从目标分布中提取的蒙特卡洛样本,与非变异采样器相比,与非变式采样器相比,自动调低。此外,假设在足够灵活的二光变形结构上,TESSS显示与平行设计计算机结构相比,效率显著提高。