We identify the average dose-response function (ADRF) for a continuously valued error-contaminated treatment by a weighted conditional expectation. We then estimate the weights nonparametrically by maximising a local generalised empirical likelihood subject to an expanding set of conditional moment equations incorporated into the deconvolution kernels. Thereafter, we construct a deconvolution kernel estimator of ADRF. We derive the asymptotic bias and variance of our ADRF estimator and provide its asymptotic linear expansion, which helps conduct statistical inference. To select our smoothing parameters, we adopt the simulation-extrapolation method and propose a new extrapolation procedure to stabilise the computation. Monte Carlo simulations and a real data study illustrate our method's practical performance.
翻译:我们通过加权条件预期,确定持续有价值的受错误污染治疗的平均剂量反应功能(ADRF),然后通过尽可能扩大局部一般经验可能性,在非进化内核中加入一系列扩大的有条件瞬时方程式的情况下,对非参数进行非对称估计。随后,我们建造了ADRF的分解内核测量仪。我们从ADRF的测算仪中得出无症状偏差和差异,并提供无症状线性扩展,这有助于进行统计推理。为了选择我们的平滑参数,我们采用了模拟外推法,并提出新的外推法,以稳定计算。蒙特卡洛模拟和真实数据研究说明了我们的方法的实际表现。