Recent advancements in deep learning have enabled 3D human body reconstruction from a monocular image, which has broad applications in multiple domains. In this paper, we propose SHARP (SHape Aware Reconstruction of People in loose clothing), a novel end-to-end trainable network that accurately recovers the 3D geometry and appearance of humans in loose clothing from a monocular image. SHARP uses a sparse and efficient fusion strategy to combine parametric body prior with a non-parametric 2D representation of clothed humans. The parametric body prior enforces geometrical consistency on the body shape and pose, while the non-parametric representation models loose clothing and handle self-occlusions as well. We also leverage the sparseness of the non-parametric representation for faster training of our network while using losses on 2D maps. Another key contribution is 3DHumans, our new life-like dataset of 3D human body scans with rich geometrical and textural details. We evaluate SHARP on 3DHumans and other publicly available datasets and show superior qualitative and quantitative performance than existing state-of-the-art methods.
翻译:最近深层学习的进展使得3D人体的重建得以从单眼图像中实现,这在多个领域都有广泛的应用。在本文中,我们提议SHARP(衣着松散的人意识到重建),这是一个全新的端到端的可训练网络,精确地从单眼图像中恢复衣着松散的人的3D几何和外观。SHARP使用稀疏而有效的融合战略,将之前的参数体与衣着人的非参数 2D 表示法结合在一起。参数体在先强制身体形状和外形的几何一致性,而非参数表态模型则松散着衣服并处理自我隔离问题。我们还利用非参数代表法的稀少性来加快我们的网络培训,同时使用2D地图上的丢失。另一个关键贡献是3D人,即我们新的3D人体扫描系统的生命数据集,其中含有丰富的几何和纹理细节。我们评估了3DHARP在3D人和其他公开存在的数据集上的几何一致性,并显示比现有的州级方法更高质量的质量和数量性表现。