We introduce $\pi$-test, a privacy-preserving algorithm for testing statistical independence between data distributed across multiple parties. Our algorithm relies on privately estimating the distance correlation between datasets, a quantitative measure of independence introduced in Sz\'ekely et al. [2007]. We establish both additive and multiplicative error bounds on the utility of our differentially private test, which we believe will find applications in a variety of distributed hypothesis testing settings involving sensitive data.
翻译:我们引入了 $\ pi$- test, 用于测试多方分布的数据之间的统计独立性的隐私保护算法。 我们的算法依赖于私下估算数据集之间的距离相关性,这是Sz\'ekely et al. [2007] 中引入的量度独立度。 我们根据我们差异化的私人测试的实用性来设定添加和倍增误差的界限, 我们认为, 它将在各种分布式的、涉及敏感数据的假设测试环境中找到应用程序 。