Attention control is a key cognitive ability for humans to select information relevant to the current task. This paper develops a computational model of attention and an algorithm for attention-based probabilistic planning in Markov decision processes. In attention-based planning, the robot decides to be in different attention modes. An attention mode corresponds to a subset of state variables monitored by the robot. By switching between different attention modes, the robot actively perceives task-relevant information to reduce the cost of information acquisition and processing, while achieving near-optimal task performance. Though planning with attention-based active perception inevitably introduces partial observations, a partially observable MDP formulation makes the problem computational expensive to solve. Instead, our proposed method employs a hierarchical planning framework in which the robot determines what to pay attention to and for how long the attention should be sustained before shifting to other information sources. During the attention sustaining phase, the robot carries out a sub-policy, computed from an abstraction of the original MDP given the current attention. We use an example where a robot is tasked to capture a set of intruders in a stochastic gridworld. The experimental results show that the proposed method enables information- and computation-efficient optimal planning in stochastic environments.
翻译:关注控制是人类选择当前任务相关信息的关键认知能力。 本文开发了Markov 决策过程中关注关注的计算模型和关注性概率规划的算法。 在以关注为基础的规划中, 机器人决定采用不同的关注模式。 关注模式与机器人监测的一组状态变量相对应。 通过在不同关注模式之间转换, 机器人积极看待与任务相关的信息, 以减少信息获取和处理的成本, 同时实现近于最佳的任务性表现。 尽管以关注为基础的积极认知规划不可避免地引入部分观测, 部分可见的 MDP 配方使得问题在计算上花费大量费用。 相反, 我们提议的方法采用了一个等级规划框架, 机器人在选择其他信息来源之前决定关注的是什么以及关注应该持续多久。 在关注持续阶段, 机器人执行一个子政策, 根据当前关注的原始 MDP 的抽象计算。 我们使用一个示例, 一个机器人被指派在随机网络世界中捕捉到一组入侵者。 实验结果显示, 拟议的方法能够使信息和高效的计算环境能够进行最佳的计算。