There has been a recent surge of research interest in attacking the problem of social relation inference based on images. Existing works classify social relations mainly by creating complicated graphs of human interactions, or learning the foreground and/or background information of persons and objects, but ignore holistic scene context. The holistic scene refers to the functionality of a place in images, such as dinning room, playground and office. In this paper, by mimicking human understanding on images, we propose an approach of \textbf{PR}actical \textbf{I}nference in \textbf{S}ocial r\textbf{E}lation (PRISE), which concisely learns interactive features of persons and discriminative features of holistic scenes. Technically, we develop a simple and fast relational graph convolutional network to capture interactive features of all persons in one image. To learn the holistic scene feature, we elaborately design a contrastive learning task based on image scene classification. To further boost the performance in social relation inference, we collect and distribute a new large-scale dataset, which consists of about 240 thousand unlabeled images. The extensive experimental results show that our novel learning framework significantly beats the state-of-the-art methods, e.g., PRISE achieves 6.8$\%$ improvement for domain classification in PIPA dataset.
翻译:最近,研究对解决基于图像的社会关系推断问题的兴趣激增。现有作品主要通过制作复杂的人类互动图表,或学习个人和物体的表面和/或背景资料,对社会关系进行分类,但忽视了整体场景背景。整体场景是指图像中某个地方的功能,如餐厅、操场和办公室。本文中,通过模仿人类对图像的理解,我们提出了一个基于图像场景分类的对比学习任务。为了进一步提升社会关系中的性能,我们收集并分发了一个新的大规模数据集,其中简明地学习了个人的互动特征和整体场景的歧视性特征。技术上,我们开发了一个简单和快速的关系图像革命网络,用一个图像来捕捉所有人的互动特征。为了了解整体场景特征,我们精心设计了一个以图像场景分类为基础的对比性学习任务。为了进一步提升社会关系中的性能,我们收集并分发了一个新的大规模数据集,它包括了个人的互动特征和整体场景的区别特征特征特征特征特征特征。我们收集并散发了一个新的大规模比例化数据集,其中含有了240 000个新的实验性SE图像学习模型。