Deep learning is moving towards increasingly sophisticated optimization objectives that employ higher-order functions, such as integration, continuous optimization, and root-finding. Since differentiable programming frameworks such as PyTorch and TensorFlow do not have first-class representations of these functions, developers must reason about the semantics of such objectives and manually translate them to differentiable code. We present a differentiable programming language, $\lambda_S$, that is the first to deliver a semantics for higher-order functions, higher-order derivatives, and Lipschitz but nondifferentiable functions. Together, these features enable $\lambda_S$ to expose differentiable, higher-order functions for integration, optimization, and root-finding as first-class functions with automatically computed derivatives. $\lambda_S$'s semantics is computable, meaning that values can be computed to arbitrary precision, and we implement $\lambda_S$ as an embedded language in Haskell. We use $\lambda_S$ to construct novel differentiable libraries for representing probability distributions, implicit surfaces, and generalized parametric surfaces -- all as instances of higher-order datatypes -- and present case studies that rely on computing the derivatives of these higher-order functions and datatypes. In addition to modeling existing differentiable algorithms, such as a differentiable ray tracer for implicit surfaces, without requiring any user-level differentiation code, we demonstrate new differentiable algorithms, such as the Hausdorff distance of generalized parametric surfaces.


翻译:深层学习正在向日益复杂的优化目标迈进, 使用更高级的功能, 如整合、 连续优化和根调查。 由于 PyTorrch 和 TensorFlow 等不同的编程框架没有这些功能的一流表示, 开发者必须解释这些目标的语义, 并手工将其转换为不同的代码。 我们展示了一种不同的编程语言, $\lambda_ S$, 这是第一个为更高级的函数、 更高级的地平级衍生品 和 Lipschitz 但不可区分的函数提供语义的语义。 这些功能使 $\ lambda_ S$ 能够将整合、 优化、 和 根调查功能作为一流的、 自动计算衍生品。 $\ lambda_ S$ 的语义可以被任意精确计算, 而我们用 $\lambda_ S$ 作为可嵌入的语言。 我们用 $\lambda_ S$ 来构建新的更高层次的图书馆, 代表概率分布式的、 隐含的地平面和直径解数据模型, 各种的图表的直径直观数据 。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月4日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员