We study the dynamic membership problem for regular languages: fix a language L, read a word w, build in time O(|w|) a data structure indicating if w is in L, and maintain this structure efficiently under letter substitutions on w. We consider this problem on the unit cost RAM model with logarithmic word length, where the problem always has a solution in O(log |w| / log log |w|) per operation. We show that the problem is in O(log log |w|) for languages in an algebraically-defined, decidable class QSG, and that it is in O(1) for another such class QLZG. We show that languages not in QSG admit a reduction from the prefix problem for a cyclic group, so that they require {\Omega}(log |w| / log log |w|) operations in the worst case; and that QSG languages not in QLZG admit a reduction from the prefix problem for the multiplicative monoid U 1 = {0, 1}, which we conjecture cannot be maintained in O(1). This yields a conditional trichotomy. We also investigate intermediate cases between O(1) and O(log log |w|). Our results are shown via the dynamic word problem for monoids and semigroups, for which we also give a classification. We thus solve open problems of the paper of Skovbjerg Frandsen, Miltersen, and Skyum [30] on the dynamic word problem, and additionally cover regular languages.


翻译:我们研究常规语言的动态会籍问题: 修正语言 L, 读一个字 w, 以时间表示 O( ⁇ w ⁇ ) 构建一个数据结构, 显示是否在L( ⁇ w ⁇ ), 并在字母替换下有效维持这个结构 。 我们用对数字长度来考虑单位成本 RAM 模型中的这一问题, 问题总是在每次操作的 O( log ⁇ w ⁇ / log log ⁇ ⁇ w ⁇ ) 中找到一个解决方案。 我们显示, 问题在于O( log ⁇ w ⁇ / log log ⁇ ⁇ ⁇ ) 中, 问题在于一个在代数定义定义、 可分解的 Q( log log log log ) 中, 问题在于 Q( log log log log) 中, 问题在于多版本的 U1 = Q( Q) QLZG) 中, 问题在于前缀 问题, 问题在于 = Q(1) = Q( r) 1 r r) r r) r) r) 。 因此, 问题也无法 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
A new non-linear instability for scalar fields
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员