Proximity complexes and filtrations are central constructions in topological data analysis. Built using distance functions, or more generally metrics, they are often used to infer connectivity information from point clouds. Here we investigate proximity complexes and filtrations built over the Chebyshev metric, also known as the maximum metric or $\ell_{\infty}$ metric, rather than the classical Euclidean metric. Somewhat surprisingly, the $\ell_{\infty}$ case has not been investigated thoroughly. In this paper, we examine a number of classical complexes under this metric, including the \v{C}ech, Vietoris-Rips, and Alpha complexes. We define two new families of flag complexes, which we call the Alpha flag and Minibox complexes, and prove their equivalence to \v{C}ech complexes in homological degrees zero and one. Moreover, we provide algorithms for finding Minibox edges of two, three, and higher-dimensional points. Finally, we present computational experiments on random points, which shows that Minibox filtrations can often be used to speed up persistent homology computations in homological degrees zero and one by reducing the number of simplices in the filtration.
翻译:近似复杂度和过滤是地形数据分析中的核心构造。 使用远程函数或更一般的度量, 通常用来从点云中推断连接信息。 我们在这里调查Chebyshev 测量仪上建造的近距离综合体和过滤器, 也称为最大公尺或$@ ⁇ infty} 公尺, 而不是古典的 Euclidean 测量仪。 令人惊讶的是, $\ ell ⁇ infty} 案例还没有彻底调查。 在本文中, 我们检查了该测量仪下的一些古典综合体, 包括\ v{ CH} 、 Vioteoris- Rips 和 Alpha 综合体。 我们定义了两个新的国旗综合体组, 我们称之为 Alpha 旗和 Minibox 综合体, 并且证明它们与 单质度零 和 1 。 此外, 我们提供了找到两个、 3 和更高维度点的迷你箱边缘点的算法 。 最后, 我们展示了在这个测量点上的数随机点上进行计算实验, 实验, 显示在 一级计算中, 将最小化为 的 的 一级, 的 Qbilcregragragragrationalalalal yal yalation yal yalation yal ycol ycol ycol ycolalation yalation 可以 yalation yalation ycol 。