In type theories, universe hierarchies are commonly used to increase the expressive power of the theory while avoiding inconsistencies arising from size issues. There are numerous ways to specify universe hierarchies, and theories may differ in details of cumulativity, choice of universe levels, specification of type formers and eliminators, and available internal operations on levels. In the current work, we aim to provide a framework which covers a large part of the design space. First, we develop syntax and semantics for cumulative universe hierarchies, where levels may come from any set equipped with a transitive well-founded ordering. In the semantics, we show that induction-recursion can be used to model transfinite hierarchies, and also support lifting operations on type codes which strictly preserve type formers. Then, we consider a setup where universe levels are first-class types and subject to arbitrary internal reasoning. This generalizes the bounded polymorphism features of Coq and at the same time the internal level computations in Agda.
翻译:在类型理论中,通常使用宇宙等级来增加理论的表达力,同时避免大小问题产生的不一致。有多种方法可以指定宇宙等级,理论在累积性细节、宇宙等级的选择、类型前行和除尘器的规格以及现有各级内部操作方面可能有所不同。在目前的工作中,我们的目标是提供一个覆盖设计空间大部分内容的框架。首先,我们为累积宇宙等级编程制定语法和语法,其中等级可能来自任何装备有过渡性有根据的定序的集成。在语法中,我们表明可使用感知性定型模型来模拟超定型等级,还支持严格保存前类的型代码的提升操作。然后,我们考虑将宇宙等级作为第一等类型和任意内部推理的设置。这概括了Coq的受约束的多元形态特征,同时在Agda进行内部水平的计算。