The analysis of data stored in multiple sites has become more popular, raising new concerns about the security of data storage and communication. Federated learning, which does not require centralizing data, is a common approach to preventing heavy data transportation, securing valued data, and protecting personal information protection. Therefore, determining how to aggregate the information obtained from the analysis of data in separate local sites has become an important statistical issue. The commonly used averaging methods may not be suitable due to data nonhomogeneity and incomparable results among individual sites, and applying them may result in the loss of information obtained from the individual analyses. Using a sequential method in federated learning with distributed computing can facilitate the integration and accelerate the analysis process. We develop a data-driven method for efficiently and effectively aggregating valued information by analyzing local data without encountering potential issues such as information security and heavy transportation due to data communication. In addition, the proposed method can preserve the properties of classical sequential adaptive design, such as data-driven sample size and estimation precision when applied to generalized linear models. We use numerical studies of simulated data and an application to COVID-19 data collected from 32 hospitals in Mexico, to illustrate the proposed method.


翻译:对多地点储存的数据的分析越来越普遍,引起了对数据储存和通信安全的新关切; 联邦学习(不需要集中数据)是防止重数据运输、确保有价值数据和保护个人信息保护的共同办法,因此,确定如何将分析数据获得的信息汇总到不同的地方地点已成为一个重要的统计问题; 通常使用的平均方法可能不合适,因为数据不尽相同,各地点之间无法比较结果,采用这些方法可能导致个人分析获得的信息丢失; 采用分散计算联合学习的顺序方法,可以促进整合和加快分析进程; 我们开发一种数据驱动方法,通过分析当地数据来高效和有效地汇总有价值的信息,而不会遇到信息安全和因数据通信而需大量运输等潜在问题; 此外,拟议方法可以保留典型的顺序适应设计的性质,例如数据驱动的抽样大小和在应用一般线性模型时的精确度; 我们使用模拟数据的数字研究,以及从墨西哥32家医院收集的COVID-19数据的应用,以说明拟议的方法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员