Binarized neural networks, or BNNs, show great promise in edge-side applications with resource limited hardware, but raise the concerns of reduced accuracy. Motivated by the complex neural networks, in this paper we introduce complex representation into the BNNs and propose Binary complex neural network -- a novel network design that processes binary complex inputs and weights through complex convolution, but still can harvest the extraordinary computation efficiency of BNNs. To ensure fast convergence rate, we propose novel BCNN based batch normalization function and weight initialization function. Experimental results on Cifar10 and ImageNet using state-of-the-art network models (e.g., ResNet, ResNetE and NIN) show that BCNN can achieve better accuracy compared to the original BNN models. BCNN improves BNN by strengthening its learning capability through complex representation and extending its applicability to complex-valued input data. The source code of BCNN will be released on GitHub.


翻译:催化神经网络,即BNN,在资源有限的硬件的边缘应用中表现出巨大的希望,但引起了对精确度降低的担忧。在复杂的神经网络的推动下,我们在本文件中将复杂的代表引入BNN,并提出Binary复杂的神经网络 -- -- 这是一种新颖的网络设计,通过复杂的演化处理复杂的复杂投入和重量,但仍可以收获BNN的特殊计算效率。为了确保快速趋同率,我们提议新的基于BNN的批量正常化功能和重量初始功能。Cifar10和图像网络使用最新网络模型(例如ResNet、ResNetE和NIN)的实验结果显示,CindNN可以比原的BNN模型更精确。BNN通过复杂的代表及其对复杂投入数据的应用,加强BNN的学习能力,从而改进BNN。BNN的源码将在GitHub上发布。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习之CNN简介
Python技术博文
20+阅读 · 2018年1月10日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
6+阅读 · 2020年10月8日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习之CNN简介
Python技术博文
20+阅读 · 2018年1月10日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
6+阅读 · 2020年10月8日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年10月3日
Top
微信扫码咨询专知VIP会员