Using deep neural networks to predict the solutions of AC optimal power flow (ACOPF) problems has been an active direction of research. However, because the ACOPF is nonconvex, it is difficult to construct a good data set that contains mostly globally optimal solutions. To overcome the challenge that the training data may contain suboptimal solutions, we propose a Lagrangian-based approach. First, we use a neural network to learn the dual variables of the ACOPF problem. Then we use a second neural network to predict solutions of the partial Lagrangian from the predicted dual variables. Since the partial Lagrangian has a much better optimization landscape, we use the predicted solutions from the neural network as a warm start for the ACOPF problem. Using standard and modified IEEE 22-bus, 39-bus, and 118-bus networks, we show that our approach is able to obtain the globally optimal cost even when the training data is mostly comprised of suboptimal solutions.
翻译:利用深神经网络预测AC最佳电流(ACOPF)问题的解决办法一直是研究的一个积极方向。然而,由于ACOPF不是碳氢化合物,很难构建一个包含大多数全球最佳解决方案的良好数据集。为了克服培训数据可能包含亚最佳解决方案的挑战,我们提议采用拉格朗加语方法。首先,我们使用神经网络学习ACOPF问题的双重变量。然后,我们使用第二个神经网络预测部分拉格朗加语的解决方案来自预测的双重变量。由于部分拉格朗江语具有更好的优化环境,我们利用神经网络预测的解决方案作为ACOPF问题的热点开端。我们使用标准及修改过的IEEEE 22-bus、39-bus和118-bus网络,我们表明我们的方法能够获得全球最佳成本,即使培训数据大多由亚最佳解决方案组成。