Confidence intervals are a standard technique for analyzing data. When applied to time series, confidence intervals are computed for each time point separately. Alternatively, we can compute confidence bands, where we are required to find the smallest area enveloping $k$ time series, where $k$ is a user parameter. Confidence bands can be then used to detect abnormal time series, not just individual observations within the time series. We will show that despite being an NP-hard problem it is possible to find optimal confidence band for some $k$. We do this by considering a different problem: discovering regularized bands, where we minimize the envelope area minus the number of included time series weighted by a parameter $\alpha$. Unlike normal confidence bands we can solve the problem exactly by using a minimum cut. By varying $\alpha$ we can obtain solutions for various $k$. If we have a constraint $k$ for which we cannot find appropriate $\alpha$, we demonstrate a simple algorithm that yields $O(\sqrt{n})$ approximation guarantee by connecting the problem to a minimum $k$-union problem. This connection also implies that we cannot approximate the problem better than $O(n^{1/4})$ under some (mild) assumptions. Finally, we consider a variant where instead of minimizing the area we minimize the maximum width. Here, we demonstrate a simple 2-approximation algorithm and show that we cannot achieve better approximation guarantee.


翻译:信任度间隔是分析数据的标准技术。 当应用到时间序列时, 将每个时间点分别计算信任度间隔。 或者, 我们可以计算信任带, 在那里我们需要找到最小的区域, 覆盖美元时间序列, 美元是一个用户参数。 然后, 信任带可以用来检测异常的时间序列, 而不仅仅是时间序列中的个别观察。 我们将显示, 尽管存在NP- 硬性问题, 但仍有可能找到一些美元的最佳信任带。 我们这样做时会考虑一个不同的问题: 发现固定的波段, 在那里, 我们最大限度地减少信封面积, 减去由参数 $\ alpha$加权加权的包含的时间序列数。 与普通的信任带不同, 我们可以通过使用最小的削减来解决这个问题。 以不同的 $\ alpha 来检测异常的时间序列, 而不是在时间序列中进行单个的观测。 如果我们有一个无法找到合适的美元约束 美元, 我们展示一种简单的算法, 将美元( sqrt{n} 近似保证, 将我们的问题与某种最低的美元连接问题联系起来。 也意味着我们无法在最小化范围内 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
123+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
【CIKM2020】多模态知识图谱推荐系统,Multi-modal KG for RS
专知会员服务
96+阅读 · 2020年8月24日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
12+阅读 · 2021年3月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员