Confidence intervals are a standard technique for analyzing data. When applied to time series, confidence intervals are computed for each time point separately. Alternatively, we can compute confidence bands, where we are required to find the smallest area enveloping $k$ time series, where $k$ is a user parameter. Confidence bands can be then used to detect abnormal time series, not just individual observations within the time series. We will show that despite being an NP-hard problem it is possible to find optimal confidence band for some $k$. We do this by considering a different problem: discovering regularized bands, where we minimize the envelope area minus the number of included time series weighted by a parameter $\alpha$. Unlike normal confidence bands we can solve the problem exactly by using a minimum cut. By varying $\alpha$ we can obtain solutions for various $k$. If we have a constraint $k$ for which we cannot find appropriate $\alpha$, we demonstrate a simple algorithm that yields $O(\sqrt{n})$ approximation guarantee by connecting the problem to a minimum $k$-union problem. This connection also implies that we cannot approximate the problem better than $O(n^{1/4})$ under some (mild) assumptions. Finally, we consider a variant where instead of minimizing the area we minimize the maximum width. Here, we demonstrate a simple 2-approximation algorithm and show that we cannot achieve better approximation guarantee.
翻译:信任度间隔是分析数据的标准技术。 当应用到时间序列时, 将每个时间点分别计算信任度间隔。 或者, 我们可以计算信任带, 在那里我们需要找到最小的区域, 覆盖美元时间序列, 美元是一个用户参数。 然后, 信任带可以用来检测异常的时间序列, 而不仅仅是时间序列中的个别观察。 我们将显示, 尽管存在NP- 硬性问题, 但仍有可能找到一些美元的最佳信任带。 我们这样做时会考虑一个不同的问题: 发现固定的波段, 在那里, 我们最大限度地减少信封面积, 减去由参数 $\ alpha$加权加权的包含的时间序列数。 与普通的信任带不同, 我们可以通过使用最小的削减来解决这个问题。 以不同的 $\ alpha 来检测异常的时间序列, 而不是在时间序列中进行单个的观测。 如果我们有一个无法找到合适的美元约束 美元, 我们展示一种简单的算法, 将美元( sqrt{n} 近似保证, 将我们的问题与某种最低的美元连接问题联系起来。 也意味着我们无法在最小化范围内 。