The search for an application of near-term quantum devices is widespread. Quantum Machine Learning is touted as a potential utilisation of such devices, particularly those which are out of the reach of the simulation capabilities of classical computers. In this work, we propose a generative Quantum Machine Learning Model, called the Ising Born Machine (IBM), which we show cannot, in the worst case, and up to suitable notions of error, be simulated efficiently by a classical device. We also show this holds for all the circuit families encountered during training. In particular, we explore quantum circuit learning using non-universal circuits derived from Ising Model Hamiltonians, which are implementable on near term quantum devices. We propose two novel training methods for the IBM by utilising the Stein Discrepancy and the Sinkhorn Divergence cost functions. We show numerically, both using a simulator within Rigetti's Forest platform and on the Aspen-1 16Q chip, that the cost functions we suggest outperform the more commonly used Maximum Mean Discrepancy (MMD) for differentiable training. We also propose an improvement to the MMD by proposing a novel utilisation of quantum kernels which we demonstrate provides improvements over its classical counterpart. We discuss the potential of these methods to learn `hard' quantum distributions, a feat which would demonstrate the advantage of quantum over classical computers, and provide the first formal definitions for what we call `Quantum Learning Supremacy'. Finally, we propose a novel view on the area of quantum circuit compilation by using the IBM to `mimic' target quantum circuits using classical output data only.


翻译:短期量子装置的应用是广泛的。 量子机器学习被称之为一种潜在的利用, 特别是那些古典计算机模拟能力所不具备的设备。 在这项工作中, 我们提出一种基因化量子机器学习模型, 叫做 Ising Born Machine (IBM), 在最坏的情况下, 我们无法用一个古典设备来模拟, 并且达到适当的误差概念。 我们还显示, 对所有在训练期间遇到的电路家庭来说, 都存在这种屏障。 特别是, 我们探索利用来自Ising Model Hamiltonians的非普遍电路进行量电路学习, 特别是那些在近期量子装置上无法执行的电路。 我们提出两种新型的IBM培训方法, 即使用Stechn Incredivergence和Sinkhorn Divergence 成本功能。 我们用数字显示, 在Rigettitreat Forum平台和Aspen-1 16Q 芯片上, 我们建议, 成本功能比更常用的量流流流流化, 我们用MD(MD) 表示, 我们用其直位流流流流流流流流流流流流流流流流流流流流流流流流的变, 来展示这些直径变, 我们用这些直流流流流流化的流化的方法来演示, 我们用这些直径变, 我们用这些直路路路路路路路路路路路路路路路路路路路路路路路路路, 展示了直路路路路路路路路路路, 我们用这些直路路路, 展示了。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Moreau-Yosida $f$-divergences
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员