Quantum classifiers provide sophisticated embeddings of input data in Hilbert space promising quantum advantage. The advantage stems from quantum feature maps encoding the inputs into quantum states with variational quantum circuits. A recent work shows how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC), an important primitive to encode binary strings into quantum states. We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning. We show that the proposed trainable embedding requires not only as few qubits as QRAC but also overcomes the limitations of QRAC to classify inputs whose classes are based on hard Boolean functions. We numerically demonstrate its use in variational quantum classifiers to achieve better performances in classifying real-world datasets, and thus its possibility to leverage near-term quantum computers for quantum machine learning.


翻译:量子分类器在Hilbert空间提供了精密的输入数据嵌入器,保证了量子优势。其优势来自量子特征图,将输入量子状态的输入编码成可变量子电路。最近的一项工作展示了如何使用量子随机访问编码(QRAC)绘制数量比特较少的离散特性。QRAC是将二进制字符串编码成量子状态的重要原始工具。我们提出了一种新的方法,将离散特性与可训练量子电路连接在一起,将QRAC与最近提出的量子特征图培训战略(量子计量学习)结合起来。我们表明,拟议的可训练嵌入不仅需要QRAC的量子数量,而且需要克服QRAC对基于硬布林函数的输入进行分类的限制。我们从数字上展示其在变异量子分类器中的用途,以便在对真实世界数据集进行分类方面实现更好的性能,从而有可能利用近期量子计算机进行量子机器学习。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
Top
微信扫码咨询专知VIP会员