Gridless methods show great superiority in line spectral estimation. These methods need to solve an atomic $l_0$ norm (i.e., the continuous analog of $l_0$ norm) minimization problem to estimate frequencies and model order. Since this problem is NP-hard to compute, relaxations of atomic $l_0$ norm, such as nuclear norm and reweighted atomic norm, have been employed for promoting sparsity. However, the relaxations give rise to a resolution limit, subsequently leading to biased model order and convergence error. To overcome the above shortcomings of relaxation, we propose a novel idea of simultaneously estimating the frequencies and model order by means of the atomic $l_0$ norm. To accomplish this idea, we build a multiobjective optimization model. The measurment error and the atomic $l_0$ norm are taken as the two optimization objectives. The proposed model directly exploits the model order via the atomic $l_0$ norm, thus breaking the resolution limit. We further design a variable-length evolutionary algorithm to solve the proposed model, which includes two innovations. One is a variable-length coding and search strategy. It flexibly codes and interactively searches diverse solutions with different model orders. These solutions act as steppingstones that help fully exploring the variable and open-ended frequency search space and provide extensive potentials towards the optima. Another innovation is a model order pruning mechanism, which heuristically prunes less contributive frequencies within the solutions, thus significantly enhancing convergence and diversity. Simulation results confirm the superiority of our approach in both frequency estimation and model order selection.


翻译:无网点方法显示线光谱估计中的优势。 这些方法需要解决原子值为$0的规范( 即连续的类似值为$0的规范), 将问题最小化, 以估计频率和模式秩序。 由于这个问题难以计算, 将原子值为$0的规范, 如核规范 和重量原子规范 的放松用于促进空间。 但是, 放松导致解析限制, 从而导致偏差的模型秩序和趋同错误。 为了克服上述放松的频率缺陷, 我们提出了一个新想法, 即同时用原子值为$0的规范来估计频率和模式秩序。 为了实现这个想法, 我们构建了一个多目标优化模型模型模型模型, 优化模型值错误和原子值为$0的规范被看作两个优化目标。 拟议模型直接利用模型顺序, 从而打破解析限制。 我们进一步设计一个可变的进化演化算法, 以解决上述模式, 包括两个创新。 一个是可变式的模型级调调和搜索方法, 用于大幅推进系统内部的搜索规则 。 因此, 可变式规则 和可变式的搜索机制 提供多样化的搜索,,, 提供多样化的系统, 和可变式的搜索,,, 系统, 提供更变式的代码和可变式的系统,,,,, 提供更变式的系统, 提供更变式的搜索,,,,,,, 系统,,,, 提供更灵活式的系统, 提供。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员