We propose a new ensemble framework for supervised learning, called machine collaboration (MaC), using a collection of base machines for prediction tasks. Unlike bagging/stacking (a parallel & independent framework) and boosting (a sequential & top-down framework), MaC is a type of circular & interactive learning framework. The circular & interactive feature helps the base machines to transfer information circularly and update their structures and parameters accordingly. The theoretical result on the risk bound of the estimator from MaC reveals that the circular & interactive feature can help MaC reduce risk via a parsimonious ensemble. We conduct extensive experiments on MaC using both simulated data and 119 benchmark real datasets. The results demonstrate that in most cases, MaC performs significantly better than several other state-of-the-art methods, including classification and regression trees, neural networks, stacking, and boosting.
翻译:我们提出了一个监督学习的新组合框架,称为机器协作(MAC),使用一系列基础机器进行预测任务。与包装/堆放(一个平行和独立的框架)和推进(一个顺序和自上而下的框架)不同,MAC是一种循环和互动学习框架。循环和互动功能帮助基础机器循环传递信息,并相应更新其结构和参数。关于来自MAC的估测员所承担风险的理论结果显示,圆形和互动功能可以通过一个相似的组合帮助MAC减少风险。我们利用模拟数据和119个基准真实数据集对MAC进行了广泛的实验。结果显示,在大多数情况下,MAC的表现大大优于其他几种最先进的方法,包括分类和回归树、神经网络、堆叠和增强。