Deep learning (DL) has shown promise for faster, high quality accelerated MRI reconstruction. However, standard supervised DL methods depend on extensive amounts of fully-sampled ground-truth data and are sensitive to out-of-distribution (OOD) shifts, in particular for low signal-to-noise ratio (SNR) acquisitions. To alleviate this challenge, we propose a semi-supervised, consistency-based framework (termed Noise2Recon) for joint MR reconstruction and denoising. Our method enables the usage of a limited number of fully-sampled and a large number of undersampled-only scans. We compare our method to augmentation-based supervised techniques and fine-tuned denoisers. Results demonstrate that even with minimal ground-truth data, Noise2Recon (1) achieves high performance on in-distribution (low-noise) scans and (2) improves generalizability to OOD, noisy scans.
翻译:深度学习( DL) 显示了更快、高质量加速磁共振重建的前景。 然而,标准监督的DL方法取决于大量完全抽样的地面实况数据,对分配外的转移十分敏感,特别是对于低信号对噪音比率(SNR)的获取。为了减轻这一挑战,我们提议了一个半监督的、基于一致性的框架(称为Nise2Recon),用于联合MR的重建和取消。我们的方法使得能够使用数量有限的完全抽样的和大量未充分抽样的扫描。我们比较了我们的方法与基于增强监督的技术和精细调整的隐居器。结果表明,即使有了最低限度的地面实况数据,Noise2Recon(1) 也实现了在分配(低噪音)中高性能的扫描和(2) 改进了对 OOD的通用性扫描、噪音扫描。