We propose techniques to incorporate coarse taxonomic labels to train image classifiers in fine-grained domains. Such labels can often be obtained with a smaller effort for fine-grained domains such as the natural world where categories are organized according to a biological taxonomy. On the Semi-iNat dataset consisting of 810 species across three Kingdoms, incorporating Phylum labels improves the Species level classification accuracy by 6% in a transfer learning setting using ImageNet pre-trained models. Incorporating the hierarchical label structure with a state-of-the-art semi-supervised learning algorithm called FixMatch improves the performance further by 1.3%. The relative gains are larger when detailed labels such as Class or Order are provided, or when models are trained from scratch. However, we find that most methods are not robust to the presence of out-of-domain data from novel classes. We propose a technique to select relevant data from a large collection of unlabeled images guided by the hierarchy which improves the robustness. Overall, our experiments show that semi-supervised learning with coarse taxonomic labels are practical for training classifiers in fine-grained domains.


翻译:我们建议采用粗皮分类标签技术,在精细放牧域中培训图像分类师。这类标签通常可以通过对细细放牧域的较小努力获得,例如按照生物分类法组织分类的自然界。在由三个王国810种物种组成的半一纳特数据集中,采用物理标签,使物种分类的精确度提高6%,使用图像网预先培训模型进行传输学习。将等级标签结构与最先进的半监督的学习算法“FixMatch”相结合,使业绩进一步提高了1.3%。如果提供分类或秩序等详细标签,或模型从抓起训练,则相对收益更大。然而,我们发现,大多数方法对于新类中存在的外部数据并不健全。我们建议一种技术,从大量由等级制导的未加标签图像中选择相关数据,以提高可靠性。总体而言,我们的实验显示,在精细的类别中,使用粗的税级标签进行半超强的学习是实用的。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员