A challenge in using robots in human-robot interaction (HRI) is to design behavior that is engaging enough to encourage voluntary, long-term interaction, yet robust to the perturbations induced by human interaction. Here we evaluate if a physical robot that generates its behavior based on its intrinsic motivations could address this challenge. We use an information theoretic quantity - predictive information maximization - as an intrinsic motivation, as simulated experiments showed that this leads to playful, exploratory behavior that is robust to changes to the robot's morphology and to its environment. We present a game-like study design, which allows us to focus on the interplay between the robot and the human participant. In contrast to a study design where participants order or control a robot to do a specific task, the robot and the human participants in our study design explore their behaviors without any specific goals. We conducted a within-subjects study (N=24) where participants interacted with a fully autonomous Sphero BB8 robot with different behavioral regimes: one realizing an adaptive, intrinsically motivated behavior and the other being reactive, but not adaptive. A quantitative analysis of post-interaction questionnaires showed a significantly higher perception of the dimension "Warmth" compared to the baseline behavior. Warmth is considered a primary dimension for social attitude formation in human social cognition. A human perceived as warm (friendly, trustworthy) experiences more positive social interactions. If future work demonstrates that this transfers to human-robot social cognition, then the generic methods presented here could be used to imbue robots with behavior leading to positive perception by and to positive social interaction with humans.


翻译:使用机器人进行人体机器人互动(HRI)的一个挑战是设计一种足够鼓励自愿、长期互动、但却能适应人类互动所引发的扰动的行为。 我们在这里评估一个基于其内在动机产生其行为的物理机器人能否应对这一挑战。 我们使用信息理论数量 — — 预测信息最大化 — — 作为一种内在动机,因为模拟实验表明,这会导致玩弄、探索性的行为,对机器人的形态和环境的变化具有强大的影响。 我们提出了一个游戏式的研究设计,让我们能够专注于机器人和人类参与者之间的相互作用。 相比之下,我们评估一个研究设计,让参与者命令或控制机器人执行特定任务,机器人和人类参与者在我们的研究设计中能够在没有任何具体目标的情况下探索他们的行为。我们进行了一个主题内研究(N=24),参与者与完全自主的Sphero BB8机器人进行互动,并具有不同的行为环境:一个通过适应性、内在动机行为和另一个反应性,而不是适应性。 与一个研究性的社会互动的量化分析相比, 后期人类行为模式的形成, 将一个更高级的社会行为模式用于人类社会层面。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Aligning AI With Shared Human Values
Arxiv
0+阅读 · 2021年1月12日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员