The multi-source data generated by distributed systems, provide a holistic description of the system. Harnessing the joint distribution of the different modalities by a learning model can be beneficial for critical applications for maintenance of the distributed systems. One such important task is the task of anomaly detection where we are interested in detecting the deviation of the current behaviour of the system from the theoretically expected. In this work, we utilize the joint representation from the distributed traces and system log data for the task of anomaly detection in distributed systems. We demonstrate that the joint utilization of traces and logs produced better results compared to the single modality anomaly detection methods. Furthermore, we formalize a learning task - next template prediction NTP, that is used as a generalization for anomaly detection for both logs and distributed trace. Finally, we demonstrate that this formalization allows for the learning of template embedding for both the traces and logs. The joint embeddings can be reused in other applications as good initialization for spans and logs.


翻译:利用分布式系统产生的多源数据,对系统进行整体描述; 利用学习模式对不同模式进行联合分配,对于维护分布式系统至关重要; 一项如此重要的任务就是探测异常点,我们有兴趣发现系统目前行为偏离理论上预期的情况; 在这项工作中,我们利用分布式系统中分布式跟踪和系统日志数据的联合代表,在分布式系统中探测异常点的任务; 我们证明,与单一模式异常点检测方法相比,联合利用痕点和日志产生更好的结果; 此外,我们正式确定了学习任务-下一个模板预测NTP,用于对日志和分布式跟踪进行异常点检测; 最后,我们证明,这种正规化有助于学习嵌入痕点和日志的模板; 联合嵌入可再用于其他应用程序,作为跨线和日志的良好初始化。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
109+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年10月11日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年10月11日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员